Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.809
Filtrar
1.
J Neurosci Res ; 102(4): e25321, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588013

RESUMO

Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Optogenética/métodos , Doenças Neurodegenerativas/terapia , Doenças Neurodegenerativas/tratamento farmacológico , Encéfalo/fisiologia , Gânglios da Base , Doença de Parkinson/genética
2.
Sci Signal ; 17(833): eabn8003, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652763

RESUMO

Inflammasomes are multiprotein platforms that control caspase-1 activation, which process the inactive precursor forms of the inflammatory cytokines IL-1ß and IL-18, leading to an inflammatory type of programmed cell death called pyroptosis. Studying inflammasome-driven processes, such as pyroptosis-induced cell swelling, under controlled conditions remains challenging because the signals that activate pyroptosis also stimulate other signaling pathways. We designed an optogenetic approach using a photo-oligomerizable inflammasome core adapter protein, apoptosis-associated speck-like containing a caspase recruitment domain (ASC), to temporally and quantitatively manipulate inflammasome activation. We demonstrated that inducing the light-sensitive oligomerization of ASC was sufficient to recapitulate the classical features of inflammasomes within minutes. This system showed that there were two phases of cell swelling during pyroptosis. This approach offers avenues for biophysical investigations into the intricate nature of cellular volume control and plasma membrane rupture during cell death.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Inflamassomos , Optogenética , Piroptose , Inflamassomos/metabolismo , Optogenética/métodos , Animais , Humanos , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Camundongos , Caspase 1/metabolismo , Caspase 1/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética
3.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658537

RESUMO

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Assuntos
Caenorhabditis elegans , Neurônios , Optogenética , Peixe-Zebra , Animais , Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canais de Potássio/metabolismo , Canais de Potássio/genética , Cloretos/metabolismo , Animais Geneticamente Modificados , Comportamento Animal , Células HEK293 , Drosophila melanogaster
4.
World J Gastroenterol ; 30(13): 1780-1790, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659489

RESUMO

Colorectal cancer (CRC) has remained the second and the third leading cause of cancer-related death worldwide and in the United States, respectively. Although significant improvement in overall survival has been achieved, death in adult populations under the age of 55 appears to have increased in the past decades. Although new classes of therapeutic strategies such as immunotherapy have emerged, their application is very limited in CRC so far. Microtubule (MT) inhibitors such as taxanes, are not generally successful in CRC. There may be some way to make MT inhibitors work effectively in CRC. One potential advantage that we can take to treat CRC may be the combination of optical techniques coupled to an endoscope or other fiber optics-based devices. A combination of optical devices and photo-activatable drugs may allow us to locally target advanced CRC cells with highly potent MT-targeting drugs. In this Editorial review, we would like to discuss the potential of optogenetic approaches in CRC management.


Assuntos
Neoplasias Colorretais , Microtúbulos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/terapia , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Ensaios Clínicos como Assunto , Optogenética/métodos , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/farmacologia
5.
Open Biol ; 14(4): 240001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38653331

RESUMO

Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.


Assuntos
Proteínas Quinases Ativadas por AMP , Autofagia , Sinalização do Cálcio , Cálcio , Optogenética , Optogenética/métodos , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Cálcio/metabolismo , Tapsigargina/farmacologia , Ativação Enzimática , Ionomicina/farmacologia
6.
PLoS Genet ; 20(3): e1011190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38483970

RESUMO

A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.


Assuntos
Drosophila , Optogenética , Animais , Drosophila/genética , Neurônios/fisiologia , Optogenética/métodos , Sinapses/genética
7.
Prog Neurobiol ; 235: 102600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548126

RESUMO

Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.


Assuntos
Epilepsia , Doença de Parkinson , Animais , Humanos , Optogenética/métodos , Modelos Animais , Neuropatologia
8.
Biophys J ; 123(8): 940-946, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38462839

RESUMO

Anion channelrhodopsin GtACR1 is a powerful optogenetic tool to inhibit nerve activity. Its kinetic mechanism was interpreted in terms of the bacteriorhodopsin photocycle, and the L intermediate was assigned to the open channel state. Here, we report the results of the comparison between the time dependence of the channel currents and the time evolutions of the K-like and L-like spectral forms. Based on the results, we question the current view on GtACR1 kinetics and the assignment of the L intermediate to the open channel state. We report evidence for a red-absorbing intermediate being responsible for channel opening.


Assuntos
Optogenética , Channelrhodopsins/metabolismo , Ânions , Cinética , Optogenética/métodos
9.
Methods Enzymol ; 694: 303-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38492956

RESUMO

Spatiotemporal interrogation of signal transduction at the single-cell level is necessary to understand how extracellular cues are converted into biochemical signals and differentially regulate cellular responses. Using single-cell perturbation tools such as optogenetics, specific biochemical cues can be delivered to selective molecules or cells at any desired location and time. By measuring cellular responses to provided perturbations, investigators have decoded and deconstructed the working mechanisms of a variety of neuroelectric and biochemical signaling processes. However, analogous methods for deciphering the working mechanisms of mechanosensitive signaling by regulating mechanical inputs to cell receptors have remained elusive. To address this unmet need, we have recently developed a nanotechnology-based single-cell and single-molecule perturbation tool, termed mechanogenetics, that enables precise spatial and mechanical control over genetically encoded cell-surface receptors in live cells. This tool combines a magnetofluorescent nanoparticle (MFN) actuator, which provides precise spatial and mechanical signals to receptors via target-specific one-to-one interaction, with a micromagnetic tweezers that remotely controls the force exerted on a single nanoparticle. This chapter provides comprehensive experimental protocols of mechanogenetics consisting of four stages: (i) chemical synthesis of MFNs, (ii) bio-conjugation and purification of monovalent MFNs, (iii) establishment of cells with genetically encoded mechanosensitive proteins, and (iv) modular targeting and control of cell-surface receptors in live cells. The entire procedure takes up to 1 week. This mechanogenetic tool can be generalized to study many outstanding questions related to the dynamics of cell signaling and transcriptional control, including the mechanism of mechanically activated receptor.


Assuntos
Nanopartículas , Optogenética , Optogenética/métodos , Nanopartículas/química , Transdução de Sinais , Receptores de Superfície Celular/metabolismo , Fenômenos Magnéticos
10.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521059

RESUMO

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Assuntos
Adenilil Ciclases , AMP Cíclico , Plasticidade Neuronal , Terminações Pré-Sinápticas , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Animais , Terminações Pré-Sinápticas/metabolismo , Camundongos , Plasticidade Neuronal/fisiologia , AMP Cíclico/metabolismo , Optogenética/métodos , Humanos , Células HEK293 , Masculino , Camundongos Endogâmicos C57BL
11.
Methods Mol Biol ; 2760: 463-477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468104

RESUMO

By applying sensory photoreceptors, optogenetics realizes the light-dependent control of cellular events and state. Given reversibility, noninvasiveness, and exquisite spatiotemporal precision, optogenetic approaches enable innovative use cases in cell biology, synthetic biology, and biotechnology. In this chapter, we detail the implementation of the pREDusk, pREDawn, pCrepusculo, and pAurora optogenetic circuits for controlling bacterial gene expression by red and blue light, respectively. The protocols provided here guide the practical use and multiplexing of these circuits, thereby enabling graded protein production in bacteria at analytical and semi-preparative scales.


Assuntos
Bactérias , 60440 , Optogenética/métodos , Expressão Gênica , Luz
12.
J Vis Exp ; (203)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38345221

RESUMO

Our goal was to accurately track the cellular distribution of an optogenetic protein and evaluate its functionality within a specific cytoplasmic location. To achieve this, we co-transfected cells with nuclear-targeted cAMP sensors and our laboratory-developed optogenetic protein, bacterial photoactivatable adenylyl cyclase-nanoluciferase (bPAC-nLuc). bPAC-nLuc, when stimulated with 445 nm light or luciferase substrates, generates adenosine 3',5'-cyclic monophosphate (cAMP). We employed a solid-state laser illuminator connected to a point scanning system that allowed us to create a grid/matrix pattern of small illuminated spots (~1 µm2) throughout the cytoplasm of HC-1 cells. By doing so, we were able to effectively track the distribution of nuclear-targeted bPAC-nLuc and generate a comprehensive cAMP response map. This map accurately represented the cellular distribution of bPAC-nLuc, and its response to light stimulation varied according to the amount of protein in the illuminated spot. This innovative approach contributes to the expanding toolkit of techniques available for investigating cellular optogenetic proteins. The ability to map its distribution and response with high precision has far-reaching potential and could advance various fields of research.


Assuntos
AMP Cíclico , Luz , AMP Cíclico/metabolismo , Optogenética/métodos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo
13.
STAR Protoc ; 5(1): 102858, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38294907

RESUMO

In deep tissue, optogenetics faces limitations with visible light. Here, we present a protocol for near-infrared (NIR) optogenetics manipulation of neurons and motor behavior in Caenorhabditis elegans using emissive upconversion nanoparticles (UCNPs). We describe steps for synthesizing and modifying UCNPs. We then detail procedures for regulating neurons using these UCNPs in the model organism C. elegans. Using NIR light allows for superior tissue penetration to manipulate neuronal activities and locomotion behavior. For complete details on the use and execution of this protocol, please refer to Guo et al.,1 Ao et al.,2 and Zhang et al.3.


Assuntos
Caenorhabditis elegans , Nanopartículas , Animais , Optogenética/métodos , Neurônios/fisiologia , Luz
14.
Neuron ; 112(6): 909-923.e9, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38242115

RESUMO

Neural population dynamics relevant to behavior vary over multiple spatial and temporal scales across three-dimensional volumes. Current optical approaches lack the spatial coverage and resolution necessary to measure and manipulate naturally occurring patterns of large-scale, distributed dynamics within and across deep brain regions such as the striatum. We designed a new micro-fiber array approach capable of chronically measuring and optogenetically manipulating local dynamics across over 100 targeted locations simultaneously in head-fixed and freely moving mice, enabling the investigation of cell-type- and neurotransmitter-specific signals over arbitrary 3D volumes at a spatial resolution and coverage previously inaccessible. We applied this method to resolve rapid dopamine release dynamics across the striatum, revealing distinct, modality-specific spatiotemporal patterns in response to salient sensory stimuli extending over millimeters of tissue. Targeted optogenetics enabled flexible control of neural signaling on multiple spatial scales, better matching endogenous signaling patterns, and the spatial localization of behavioral function across large circuits.


Assuntos
Encéfalo , Dopamina , Camundongos , Animais , Encéfalo/fisiologia , Corpo Estriado , Neostriado , Optogenética/métodos
15.
Europace ; 26(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38227822

RESUMO

State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Optogenética , Humanos , Técnicas Eletrofisiológicas Cardíacas/métodos , Optogenética/métodos , Eletrofisiologia Cardíaca/métodos , Coração , Arritmias Cardíacas/terapia
16.
Curr Opin Neurobiol ; 84: 102817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042130

RESUMO

Technical innovation in neuroscience introduced powerful tools for measuring and manipulating neuronal activity via optical, chemogenetic, and calcium-imaging tools. These tools were initially tested primarily in male animals but are now increasingly being used in females as well. In this review, we consider how these tools may work differently in males and females. For example, we review sex differences in the metabolism of chemogenetic ligands and their downstream signaling effects. Optical tools more directly alter depolarization or hyperpolarization of neurons, but biological sex and gonadal hormones modulate synaptic inputs and intrinsic excitability. We review studies demonstrating that optogenetic manipulations are sometimes consistent across the rodent estrous cycle but within certain circuits; manipulations can vary across the ovarian cycle. Finally, calcium-imaging methods utilize genetically encoded calcium indicators to measure neuronal activity. Testosterone and estradiol can directly modulate calcium influx, and we consider these implications for interpreting the results of calcium-imaging studies. Together, our findings suggest that these neuroscientific tools may sometimes work differently in males and females and that users should be aware of these differences when applying these methods.


Assuntos
Cálcio , Neurociências , Animais , Masculino , Feminino , Cálcio/metabolismo , Optogenética/métodos , Caracteres Sexuais , Neurônios/fisiologia
17.
Neuroscience ; 536: 104-118, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37977418

RESUMO

Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.


Assuntos
Optogenética , Qualidade de Vida , Humanos , Optogenética/métodos , Dor , Neurônios/fisiologia , Manejo da Dor
18.
Biotechnol J ; 19(1): e2300071, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877211

RESUMO

Light-inducible regulation of cellular pathways and gene circuits in mammalian cells is a new frontier in mammalian genetic engineering. Optogenetic mammalian cell cultures, which are light-sensitive engineered cells, utilize light to regulate gene expression and protein activity. As a low-cost, tunable, and reversible input, light is highly adept at spatiotemporal and orthogonal regulation of cellular behavior. However, light is absorbed and scattered as it travels through media and cells, and the applicability of optogenetics in larger mammalian bioreactors has not been determined. In this work, we computationally explore the size limit to which optogenetics can be applied in cylindrical bioreactors at relevant height-to-diameter ratios. We model the propagation of light using the radiative transfer equation and consider changes in reactor volume, absorption coefficient, scattering coefficient, and scattering anisotropy. We observe sufficient light penetration for activation in simulated bioreactors with sizes of up to 80,000 L at maximal cell densities. We performed supporting experiments and found that significant attenuation occurs at the boundaries of the system, but the relative change in intensity distribution within the reactor was consistent with simulation results. We conclude that optogenetics can be applied to bioreactors at an industrial scale and may be a valuable tool for specific biomanufacturing applications.


Assuntos
Reatores Biológicos , Optogenética , Animais , Optogenética/métodos , Técnicas de Cultura de Células , Mamíferos , Contagem de Células
19.
J Neurosci Methods ; 401: 110001, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914002

RESUMO

BACKGROUND: Optogenetic approaches in transparent zebrafish models have provided numerous insights into vertebrate neurobiology. The purpose of this study was to develop methods to activate light-sensitive transgene products simultaneously throughout an entire larval zebrafish. NEW METHOD: We developed a LED illumination stand and microcontroller unit to expose zebrafish larvae reproducibly to full field illumination at defined wavelength, power, and energy. RESULTS: The LED stand generated a sufficiently flat illumination field to expose multiple larval zebrafish to high power light stimuli uniformly, while avoiding sample bath warming. The controller unit allowed precise automated delivery of predetermined amounts of light energy at calibrated power. We demonstrated the utility of the approach by driving photoconversion of Kaede (398 nm), photodimerization of GAVPO (450 nm), and photoactivation of dL5**/MG2I (661 nm) in neurons throughout the CNS of larval zebrafish. Observed outcomes were influenced by both total light energy and its rate of delivery, highlighting the importance of controlling these variables to obtain reproducible results. COMPARISON WITH EXISTING METHODS: Our approach employs inexpensive LED chip arrays to deliver narrow-waveband light with a sufficiently flat illumination field to span multiple larval zebrafish simultaneously. Calibration of light power and energy are built into the workflow. CONCLUSIONS: The LED illuminator and controller can be constructed from widely available materials using the drawings, instructions, and software provided. This approach will be useful for multiple optogenetic applications in zebrafish and other models.


Assuntos
Optogenética , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Optogenética/métodos , Larva , Neurônios/fisiologia , Transgenes
20.
J Neurosci Methods ; 403: 110051, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145718

RESUMO

BACKGROUND: Perception and behavior require coordinated activity of thousands of neurons operating in networks that span millimeters of brain area. In vivo calcium imaging approaches have proven exceptionally powerful for examining the structure of these networks at large scales, and optogenetics can allow for causal manipulations of large populations of neurons. However, realizing the full potential of these techniques requires the ability to simultaneously measure and manipulate distinct circuit elements on the scale of millimeters. NEW METHOD: We describe an opto-macroscope, an artifact-free, all-optical system capable of delivering patterned optogenetic stimulation with high spatial and temporal resolution across millimeters of brain while simultaneously imaging functional neural activity. RESULTS: We find that this approach provides direct manipulation of cortical regions ranging from hundreds of microns to several millimeters in area, allowing for the perturbation of individual brain areas or networks of functional domains. Using this system we find that spatially complex endogenous networks in the developing ferret visual cortex can be readily reactivated by precisely designed patterned optogenetic stimuli. COMPARISON WITH EXISTING METHODS: Our opto-macroscope extends current all-optical optogenetic approaches which operate on a cellular scale with multiphoton stimulation, and are poorly suited to investigate the millimeter-scale of many functional networks. It also builds upon other mesoscopic optogenetic techniques that lack simultaneous optical readouts of neural activity. CONCLUSIONS: The large-scale all-optical capabilities of our system make it a powerful new tool for investigating the contribution of cortical domains and brain areas to the functional neural networks that underlie perception and behavior.


Assuntos
Furões , Córtex Visual , Animais , Neurônios/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Encéfalo/fisiologia , Optogenética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...